On the Cardinalities of Kronecker Quiver Grassmannians

نویسندگان

  • CSABA SZÁNTÓ
  • Csaba Szántó
چکیده

Abstract. We deduce using the Ringel-Hall algebra approach explicit formulas for the cardinalities of some Grassmannians over a finite field associated to the Kronecker quiver. We realize in this way a quantification of the formulas obtained by Caldero and Zelevinsky for the Euler characteristics of these Grassmannians. We also present a recursive algorithm for computing the cardinality of every Kronecker quiver Grassmannian over a finite field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Quiver Varieties and Affine Grassmannians of Type A

We construct Nakajima’s quiver varieties of type A in terms of affine Grassmannians of type A. This gives a compactification of quiver varieties and a decomposition of affine Grassmannians into a disjoint union of quiver varieties. Consequently, singularities of quiver varieties, nilpotent orbits and affine Grassmannians are the same in type A. The construction also provides a geometric framewo...

متن کامل

Quiver Varieties and Beilinson-drinfeld Grassmannians of Type A

We construct Nakajima’s quiver varieties of type A in terms of conjugacy classes of matrices and (non-Slodowy’s) transverse slices naturally arising from affine Grassmannians. In full generality quiver varieties are embedded into Beilinson-Drinfeld Grassmannians of type A. Our construction provides a compactification of Nakajima’s quiver varieties and a decomposition of an affine Grassmannian i...

متن کامل

Quiver Grassmannians, Quiver Varieties and the Preprojective Algebra

Quivers play an important role in the representation theory of algebras, with a key ingredient being the path algebra and the preprojective algebra. Quiver grassmannians are varieties of submodules of a fixed module of the path or preprojective algebra. In the current paper, we study these objects in detail. We show that the quiver grassmannians corresponding to submodules of certain injective ...

متن کامل

Framed Moduli and Grassmannians of Submodules

In this work we study a realization of moduli spaces of framed quiver representations as Grassmannians of submodules devised by Markus Reineke. Obtained is a generalization of this construction to finite dimensional associative algebras and for quivers with oriented cycles over an arbitrary infinite field. As an application we get an explicit realization of fibers for the moduli space bundle ov...

متن کامل

Bases of the Quantum Cluster Algebra of the Kronecker Quiver

We construct bar-invariant Z[q 1 2 ]−bases of the quantum cluster algebra of the Kronecker quiver which are quantum analogues of the canonical basis, semicanonical basis and dual semicanonical basis of the cluster algebra of the Kronecker quiver in the sense of [14],[4] and [11] respectively. As a byproduct, we prove the positivity of the elements in these bases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009